CONTROL ESTADÍSTICO DE PROCESOS MEDIANTE GRÁFICOS DE CONTROL MULTIVARIADOS T² DE HOTELLING, MEWMA Y MCUSUM.

Barbiero, C; Flury, M.; Pagura, A.; Quaglino, M.; Ruggieri, M. Instituto de Investigaciones Teóricas y Aplicadas. Escuela de Estadística.

Control estadístico de procesos (SPC): controla en forma individual las características de calidad más importantes de un producto durante su proceso de fabricación. Objetivo: descubrir causas asignables de variación y tomar acciones correctivas.

Control multivariado de procesos (MSPC): controla las características de calidad más importantes de un producto en forma simultánea, permitiendo evaluar correlaciones. Es una valiosa alternativa al SPC.

Gráficos de control multivariados

Herramientas potentes del MSPC que permiten detectar alteraciones que puedan producir cambios indeseados en la calidad del producto. Los más desarrollados hasta el momento son:

- T² de HOTELLING o Shewhart multivariado (1947)
- MEWMA: gráfico multivariado de promedios móviles ponderados exponencialmente (Lowry y col. 1992)
- MCUSUM: gráfico multivariado de sumas acumuladas (Crosier 1986)

Los dos últimos, a diferencia del T², son gráficos ponderados en el tiempo.

Cálculo de la estadística:

Se consideran en forma simultánea p características de calidad que pueden ser modeladas, cuando el proceso está bajo control, por una función de densidad normal p-variante, con vector de medias $\mu_0 = (\mu_{01}, \mu_{02}, ..., \mu_{0p})'$ y matriz de variancias y covariancias Σ_0 de orden

T² DE HOTELLING

$$T_i^2 = n(\overline{\mathbf{X}}_i - \boldsymbol{\mu}_0)' \sum_{i=0}^{-1} (\overline{\mathbf{X}}_i - \boldsymbol{\mu}_0)$$
 L.S.C. = $\chi_{p,\alpha}^2$.

$$T_i^2 = Z_i \sum_{i=1}^{n-1} Z_i$$
 L.S.C. = h (h > 0)

• MEWMA $T_{i}^{2} = Z_{i} \sum_{z}^{-1} Z_{i}$ L.S.C. = h (h > 0) Siendo $\mathbf{Z}_{i} = \mathbf{R} \mathbf{X}_{i} + (\mathbf{I} - \mathbf{R}) \mathbf{Z}_{i-1}$; $i \in \mathbb{N}$, con $\mathbf{Z}_{0} = \mathbf{0}$; $\mathbf{R} = \operatorname{diag}(\mathbf{r}_{1}, \mathbf{r}_{2}, ..., \mathbf{r}_{p})$; $0 < \mathbf{r}_{j} \le 1$; $j = 1, 2, ..., p, \mathbf{I}$ matriz identidad de orden p, r_j profundidad de memoria de cada variable. \sum_z matriz de covariancias de los \mathbf{Z}_i .

Valores adecuados de r y h pueden obtenerse de las tablas proporcionadas por Lowry.

MCUSUM

siendo:

Primer procedimiento: COT (CUSUM of T)

Reduce cada observación multivariada a un escalar y construye la estadística CUSUM con los escalares.

$$\begin{aligned} S_{i} &= \text{máx } (0, \, S_{i\text{-}1} + T_i - k) & \text{L.S.C.} &= h \\ \text{Siendo} \quad T_i &= \sqrt{{T_i}^2} = \sqrt{n(\overline{\mathbf{X}}_i - \boldsymbol{\mu}_0)' \sum_{i=0}^{-1} \left(\overline{\mathbf{X}}_i - \boldsymbol{\mu}_0\right)} \,, \, \text{con } S_0 \geq 0 \,\, (\, \text{en general } S_0 = 0) \,\, \text{y k} > 0. \end{aligned}$$

Valores de h y k pueden obtenerse de Tablas proporcionadas por Crosier.

Segundo procedimiento: CUSUM MULTIVARIADO

Forma un vector CUSUM a partir de las observaciones.

$$Y_{i} = \left[\mathbf{S}_{i}^{\top} \sum_{i}^{-1} \mathbf{S}_{i}^{\top}\right]^{1/2} \qquad \qquad \text{L.S.C.} = \mathbf{h} \qquad (\mathbf{h} > 0)$$

$$\mathbf{S}_{i} = \left(\mathbf{S}_{i-1} + \mathbf{X}_{i} - \mathbf{\mu}_{0}\right) \left(1 - \frac{k}{c_{i}}\right) \qquad \text{si } c_{i} > k; \qquad \delta \quad \mathbf{S}_{i} = 0 \qquad \text{si } c_{i} \leq k$$

$$\mathbf{C}_{i} = \left[\mathbf{S}_{i-1} + \mathbf{X}_{i} - \mathbf{\mu}_{0}\right] \left(\mathbf{S}_{i-1} + \mathbf{X}_{i} - \mathbf{\mu}_{0}\right) \left(\mathbf{S}_{i-1} + \mathbf{X}_{i} - \mathbf{\mu}_{0}\right) \left(\mathbf{S}_{i-1} + \mathbf{S}_{i-1} - \mathbf{S}_{i-1}\right) \left(\mathbf{S}_{i-1} - \mathbf{S$$

Con
$$\mathbf{C}_{i=}[(\mathbf{S}_{i-1} + \mathbf{X}_i - \boldsymbol{\mu}_0)' \sum_{i=1}^{-1} (\mathbf{S}_{i-1} + \mathbf{X}_i - \boldsymbol{\mu}_0)]^{1/2}$$
; \mathbf{S}_{o} generalmente es igual a cero.

Crosier sugiere utilizar valores de $k = \frac{d}{2}$. Proporciona tablas con valores de <u>h</u> para el caso de p = 2, 5, 10 y 20 variables.

COMPARACIÓN DE LOS ESQUEMAS - CONCLUSIONES

T²: es insensible a cambios pequeños a moderados en el vector de medias del proceso. Presenta falta de robustez. Es la estadística de cálculo más sencillo. Existen propuestas para interpretar señales fuera de control (ranqueo de las componentes del vector, ajustes por regresión, descomposición de la estadística T², empleo de diversos gráficos, análisis por Componentes Principales, utilización del método de Proyección sobre Estructuras Latentes o Mínimos Cuadrados Parciales).

MEWMA: es efectivo para detectar cambios de cualquier tamaño o dirección, aún en distribuciones asimétricas; el vector MEWMA da idea de la dirección del cambio, pero no proporciona una estimación precisa del vector de medias en curso.

MCUSUM: los dos esquemas proporcionan una detección más rápida de un cambio en el vector de medias que los gráficos T², siendo preferible el CUSUM multivariado al esquema COT. El CUSUM multivariado también proporciona una indicación de la dirección en la cual han cambiado las medias.

En análisis multivariado, el gráfico T^2 se encuentra en software estadísticos de aplicación masiva [STATGRAPHICS, S-PLUS; SIMCA y PLS Toolbox de MATLAB]. Los gráficos MCUSUM y MEWMA requieren de una mayor complejidad de cálculo frente al gráfico T^2 y no están aún incorporados en software accesible o de uso frecuente. Sin embargo, presentan una gran potencialidad en su aplicación y su divulgación debería enfatizarse en el ámbito industrial.